Analysis of the RNA binding protein (RBP) motifs for RNA-Seq and miRNAs (v2)

gene_x 0 like s 24 view s

Tags: pipeline

There are several alternative R packages and tools to perform motif enrichment analysis for RNA-binding proteins (RBPs), beyond PWMEnrich::motifEnrichment(). Here are the most notable ones:

| Tool / Package           | Enrichment        | Custom Motifs   | CLI or R? | RNA-specific?  |
| ------------------------ | ----------------- | --------------- | --------- | -------------- |
| **PWMEnrich**            | ✅                 | ✅               | R         | ✅              |
| **RBPmap**               | ✅                 | ❌ (uses own db) | Web/CLI   | ✅              |  ----> try RBPmap_results + enrichments!
| **Biostrings/TFBSTools** | ❌ (only scanning) | ✅               | R         | ❌              |  #ATtRACT + Biostrings / TFBSTools
| **rmap**                 | ✅ (CLIP-based)    | ❌               | R         | ✅              |
| **Homer**                | ✅                 | ✅               | CLI       | ⚠ RNA optional |
| **MEME (AME, FIMO)**     | ✅                 | ✅               | Web/CLI   | ⚠ Generic      |
  1. Get 3UTR.fasta, 5UTR.fasta, CDS.fasta and transcripts.fasta

            mRNA Transcript
    ┌────────────┬────────────┬────────────┐
    │   5′ UTR   │     CDS    │   3′ UTR   │
    └────────────┴────────────┴────────────┘
    ↑            ↑            ↑            ↑
    Start        Start        Stop         End
    of           Codon       Codon        of
    Transcript                             Transcript
    
    ✅ Option 1: Use GENCODE and python scripts (CHOSEN!)
    
    ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/MKL-1_wt.EV_vs_parental-up.txt    #20086
    ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/MKL-1_wt.EV_vs_parental-down.txt  #634
    ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/WaGa_wt.EV_vs_parental-up.txt     #23832
    ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/WaGa_wt.EV_vs_parental-down.txt   #375
    
    #Filtering the down-regulated genes to include only protein_coding genes before extracting 3' UTRs, because
    #1. Only protein_coding genes have well-annotated 3' UTRs
    #3' UTRs are defined as the region after the CDS (coding sequence) and before the poly-A tail.
    #Non-coding RNAs (e.g., lncRNA, snoRNA, miRNA precursors) do not have CDS, and therefore don't have canonical 3' UTRs.
    #2. In GENCODE, most UTR annotations are only provided for transcripts of gene_type = "protein_coding".
    
    grep ",\"protein_coding\"," ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/MKL-1_wt.EV_vs_parental-up.txt > MKL-1_wt.EV_vs_parental-up_protein_coding.txt
    grep ",\"protein_coding\"," ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/MKL-1_wt.EV_vs_parental-down.txt > MKL-1_wt.EV_vs_parental-down_protein_coding.txt
    grep ",\"protein_coding\"," ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/WaGa_wt.EV_vs_parental-up.txt > WaGa_wt.EV_vs_parental-up_protein_coding.txt
    grep ",\"protein_coding\"," ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/WaGa_wt.EV_vs_parental-down.txt > WaGa_wt.EV_vs_parental-down_protein_coding.txt
    
    #Visit and Download: GENCODE FTP site https://www.gencodegenes.org/human/
        * GTF annotation file (e.g., gencode.v48.annotation.gtf.gz)
        * Corresponding genome FASTA (e.g., GRCh38.primary_assembly.genome.fa.gz)
    wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_48/gencode.v48.annotation.gtf.gz
    wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_48/GRCh38.primary_assembly.genome.fa.gz
    gunzip gencode.v48.annotation.gtf.gz
    gunzip GRCh38.primary_assembly.genome.fa.gz
    
    python extract_transcript_parts.py MKL-1_wt.EV_vs_parental-down_protein_coding.txt ~/REFs/gencode.v48.annotation.gtf ~/REFs/GRCh38.primary_assembly.genome.fa MKL-1_down
    python extract_transcript_parts.py MKL-1_wt.EV_vs_parental-up_protein_coding.txt ~/REFs/gencode.v48.annotation.gtf ~/REFs/GRCh38.primary_assembly.genome.fa MKL-1_up  #5988
    python extract_transcript_parts.py WaGa_wt.EV_vs_parental-down_protein_coding.txt ~/REFs/gencode.v48.annotation.gtf ~/REFs/GRCh38.primary_assembly.genome.fa WaGa_down  #93
    python extract_transcript_parts.py WaGa_wt.EV_vs_parental-up_protein_coding.txt ~/REFs/gencode.v48.annotation.gtf ~/REFs/GRCh38.primary_assembly.genome.fa WaGa_up  #6538
    
    ✅ Option 2-5 see at the end!
    
  2. Why 3' UTR?

    🧬 miRNA, RBP, or translation/post-transcriptional regulation
    ➡️ Use 3' UTR sequences
    
    Because:
    
    Most miRNA binding and many RBP motifs are located in the 3' UTR.
    
    It’s the primary region for mRNA stability, localization, and translation regulation.
    
    🧠 Example: You're looking for binding enrichment of miRNAs or RNA-binding proteins (PUM, HuR, etc.)
    ✅ Input = 3UTR.fasta
    
    🧪 If you're testing PBRs related to:
    - Translation initiation, upstream ORFs, or 5' cap interaction:
    ➡️ Use 5' UTR
    
    - Coding mutations, protein-level motifs, or translational efficiency:
    ➡️ Use CDS
    
    - General transcriptome-wide motif search (no preference):
    ➡️ Use transcripts, or test all regions separately to localize signal
    
  3. Recommended Workflow with RBPmap https://rbpmap.technion.ac.il (Too slow!)

    RBPmap itself does not compute enrichment p-values or FDR; it's a motif scanning tool.
    
    To get statistically meaningful RBP enrichments, combine RBPmap with custom permutation testing or Fisher’s exact test + multiple testing correction.
    
        1. Prepare foreground (target) and background sequences
    
            Extract 3′ UTRs of:
    
            📉 Downregulated mRNAs (foreground) — likely targeted by upregulated miRNAs
    
            ⚪ A control set of 3′ UTRs — e.g., non-differentially expressed protein-coding genes
    
                grep ",\"protein_coding\"," ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/MKL-1_wt.EV_vs_parental-all.txt > MKL-1_wt.EV_vs_parental-all_protein_coding.txt
                grep ",\"protein_coding\"," ~/DATA/Data_Ute/Data_RNA-Seq_MKL-1+WaGa/results_2025_1/degenes/WaGa_wt.EV_vs_parental-all.txt > WaGa_wt.EV_vs_parental-all_protein_coding.txt
    
                cut -d',' -f1 MKL-1_wt.EV_vs_parental-all_protein_coding.txt | sort > all_genes.txt  #19239
                cut -d',' -f1 MKL-1_wt.EV_vs_parental-up_protein_coding.txt | sort > up_genes.txt  #5988
                cut -d',' -f1 MKL-1_wt.EV_vs_parental-down_protein_coding.txt | sort > down_genes.txt  #112
                cat up_genes.txt down_genes.txt | sort | uniq > regulated_genes.txt
                comm -23 all_genes.txt regulated_genes.txt > background_genes.txt
                grep -Ff background_genes.txt MKL-1_wt.EV_vs_parental-all_protein_coding.txt > MKL-1_wt.EV_vs_parental-background_protein_coding.txt  #13139
    
                cut -d',' -f1 WaGa_wt.EV_vs_parental-all_protein_coding.txt | sort > all_genes.txt  #19239
                cut -d',' -f1 WaGa_wt.EV_vs_parental-up_protein_coding.txt | sort > up_genes.txt  #6538
                cut -d',' -f1 WaGa_wt.EV_vs_parental-down_protein_coding.txt | sort > down_genes.txt  #93
                cat up_genes.txt down_genes.txt | sort | uniq > regulated_genes.txt
                comm -23 all_genes.txt regulated_genes.txt > background_genes.txt
                grep -Ff background_genes.txt WaGa_wt.EV_vs_parental-all_protein_coding.txt > WaGa_wt.EV_vs_parental-background_protein_coding.txt  #12608
    
                python extract_transcript_parts.py MKL-1_wt.EV_vs_parental-background_protein_coding.txt ~/REFs/gencode.v48.annotation.gtf ~/REFs/GRCh38.primary_assembly.genome.fa MKL-1_background
                python extract_transcript_parts.py WaGa_wt.EV_vs_parental-background_protein_coding.txt ~/REFs/gencode.v48.annotation.gtf ~/REFs/GRCh38.primary_assembly.genome.fa WaGa_background
    
                foreground.fasta: 你的目标(前景)序列,例如下调基因的 3′UTRs。
                background.fasta: 你的背景对照序列,例如未显著差异表达的基因的 3′UTRs。
    
        2. Run RBPmap separately on both sets (in total of 6 calculations)
    
            * Submit both sets of UTRs to RBPmap.
            * Use the same settings (e.g., “human genome”, “high stringency”, "Apply conservation filter" etc.)
            * Choose all RBPs
            * Download motif match outputs for both sets
    
        3. Count motif hits per RBP in each set
    
            You now have:
            For each RBP:
            a: number of target 3′ UTRs with a motif match
            b: number of background UTRs with a motif match
            c: total number of target UTRs
            d: total number of background UTRs
    
        4. Perform Fisher’s Exact Test per RBP
    
            For each RBP, construct a 2x2 table:
    
            Motif Present   Motif Absent
            Foreground (targets)    a   c - a
            Background  b   d - b
    
        5. Adjust p-values for multiple testing
        Use Benjamini-Hochberg (FDR) correction (e.g., in Python or R) across all RBPs tested.
    
        6.✅ Summary
    
            Step    Tool
            Prepare Database of RNA-binding motifs  ATtRACT
            3′ UTR extraction   extract_transcript_parts.py
            Motif scan  RBPmap or FIMO
            Count motif hits    Your own parser (Python or R)
            Fisher’s exact test scipy.stats or fisher.test()
            FDR correction  multipletests() or p.adjust()
    
        python rbp_enrichment.py rbpmap_downregulated.tsv rbpmap_background.tsv rbp_enrichment_results.csv
    
  4. Quick Drop-In Plan (RBPmap Alternative with FIMO for motif scan)

    1. [ATtRACT + FIMO (MEME suite)]
    
        ATtRACT: Database of RNA-binding motifs.
        FIMO: Fast and scriptable motif scanning tool.
    
        #Download RBP motifs (PWM) from ATtRACT DB; Convert to MEME format (if needed); Use FIMO to scan UTR sequences
    
        grep "Homo_sapiens" ATtRACT_db.txt > attract_human.txt
    
        #cut -f12 attract_human.txt | sort | uniq > valid_ids.txt
    
        python convert_attract_pwm_to_meme.py
    
        fimo --thresh 1e-4 --oc fimo_foreground_MKL-1_down attract_human.meme ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/MKL-1_down.3UTR.fasta
        fimo --thresh 1e-4 --oc fimo_foreground_MKL-1_up attract_human.meme ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/MKL-1_up.3UTR.fasta
        fimo --thresh 1e-4 --oc fimo_background_MKL-1_background attract_human.meme ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/MKL-1_background.3UTR.fasta
        fimo --thresh 1e-4 --oc fimo_foreground_WaGa_down attract_human.meme ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/WaGa_down.3UTR.fasta
        fimo --thresh 1e-4 --oc fimo_foreground_WaGa_up attract_human.meme ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/WaGa_up.3UTR.fasta
        fimo --thresh 1e-4 --oc fimo_background_WaGa_background attract_human.meme ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/WaGa_background.3UTR.fasta
        #end
    
        #TODO_TOMORROW: mv PBS_analysis RBP_analysis
    
        #Test
        python run_enrichment.py \
            --attract ATtRACT_db.txt \
            --fimo_fg fimo_foreground_WaGa_down/fimo.tsv \
            --fimo_bg fimo_foreground2/fimo.tsv \
            --output rbp_enrichment_test.csv
    
        python run_enrichment.py \
            --attract ATtRACT_db.txt \
            --fimo_fg fimo_foreground_MKL-1_up/fimo.tsv \
            --fimo_bg fimo_background_MKL-1_background/fimo.tsv \
            --output rbp_enrichment_MKL-1_up.csv
        python run_enrichment.py \
            --attract ATtRACT_db.txt \
            --fimo_fg fimo_foreground_MKL-1_down/fimo.tsv \
            --fimo_bg fimo_background_MKL-1_background/fimo.tsv \
            --output rbp_enrichment_MKL-1_down.csv
        python run_enrichment.py \
            --attract ATtRACT_db.txt \
            --fimo_fg fimo_foreground_WaGa_up/fimo.tsv \
            --fimo_bg fimo_background_WaGa_background/fimo.tsv \
            --output rbp_enrichment_WaGa_up.csv
        python run_enrichment.py \
            --attract ATtRACT_db.txt \
            --fimo_fg fimo_foreground_WaGa_down/fimo.tsv \
            --fimo_bg fimo_background_WaGa_background/fimo.tsv \
            --output rbp_enrichment_WaGa_down.csv
    
        #工具 功能  关注点 应用场景
        FIMO    精确查找 motif 出现位置 motif 在什么位置出现   找出具体结合位点
        AME 统计 motif 富集情况   哪些 motif 在某组序列中更富集  比较 motif 是否显著出现更多
    
        如你还在做差异表达后的RBP富集分析,可以考虑先用 FIMO 扫描,再用你自己写的代码 + Fisher’s exact test 做类似 AME 的工作,或直接用 AME 做分析
    
        # Generate the attract_human.meme inkl. Gene_name!
        #python generate_named_meme.py pwm.txt attract_human.txt
        python generate_attract_human_meme.py pwm.txt ATtRACT_db.txt
    
        #ERROR during running ame --> DEBUG!
        #--control ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/WaGa_all.3UTR.fasta \
        ame --control --shuffle-- \
        --oc ame_out \
        --scoring avg \
        --method fisher --verbose 5 ../Data_RNA-Seq_MKL-1+WaGa/motif_analysis/WaGa_down.3UTR.fasta attract_human.meme
    
    2. GraphProt2 (ALTERNATIVE_TODO)
    
        ML-based tool using sequence + structure
    
        Pre-trained models for many RBPs
    
        ✅ Advantages:
    
        Local, GPU/CPU supported
    
        More biologically realistic (includes structure)
    
  5. miRNAs motif analysis using ATtRACT + FIMO

    ✅ Goal
    
        * Extract their sequences
        * Generate a background set
        * Run RBP enrichment (e.g., with RBPmap or FIMO)
        * Get p-adjusted enrichment stats (e.g., Fisher + BH)
    
        5.1 (Optional)
        Input_1. DE results (differential expression file from smallRNA-seq)
            Example file: smallRNA_upregulated.txt
            Format: 1st column = miRNA ID (e.g., hsa-miR-21-5p), optionally with other stats.
    
        Input_2. Reference FASTA (Reference sequences from miRBase or GENCODE)
            From miRBase:
            mature.fa.gz → contains mature miRNA sequences
            hairpin.fa.gz → for pre-miRNAs
    
            python extract_miRNA_fasta.py smallRNA_upregulated.txt mature.fa up_mature_miRNAs.fa
            python extract_miRNA_fasta.py smallRNA_downregulated.txt hairpin.fa down_precursor_miRNAs.fa
    
        5.2 (Advanced)
            Extract Sequences + Background Set
    
            Inputs:
                * up_miRNA.txt and down_miRNA.txt: DE results (first column = miRNA name, e.g., hsa-miR-21-5p)
                * mature.fa or hairpin.fa from miRBase
    
            Outputs:
                * mirna_up.fa
                * mirna_down.fa
                * mirna_background.fa
    
            python prepare_miRNA_sets.py up_miRNA.txt down_miRNA.txt mature.fa mirna
    
        🔬 What You Can Do Next
    
        Goal    Tool    Input
        * RBP motif enrichment in pre-miRNAs    RBPmap, FIMO, AME   up_precursor_miRNAs.fa
        * Motif comparison (up vs down miRNAs)  DREME, MEME, HOMER  Up/down mature miRNAs
        * Build background for enrichment   Random subset of other miRNAs   Filtered from hairpin.fa
    
        ✅ RBP Enrichment from RBPmap Results
        🔹 Use RBPmap output (typically CSV or TSV)
        🔹 Compare hit counts in input vs background
        🔹 Perform Fisher's exact test + Benjamini-Hochberg correction
        🔹 Plot significantly enriched RBPs
    
        📁 Requirements
        You’ll need:
    
        File    Description
        rbpmap_up.tsv   RBPmap result file for upregulated set
        rbpmap_background.tsv   RBPmap result file for background set
    
        📝 These should have columns like:
    
        Motif Name or Protein
    
        Sequence Name or Sequence ID
        (If different, I’ll show you how to adjust.
    
        python analyze_rbpmap_enrichment.py rbpmap_up.tsv rbpmap_background.tsv enriched_up.csv enriched_up_plot.png
    
        ✅ Output
        enriched_up.csv
        RBP FG_hits BG_hits pval    padj    enriched
        ELAVL1  24  2   0.0001  0.003   ✅
        HNRNPA1 15  10  0.04    0.06    ❌
    
        enriched_up_plot.png
        Barplot showing top significant RBPs (lowest FDR)
    
        🧰 Customization Options
        Would you like:
    
            * Support for multiple RBPmap files at once?
    
            * To match by RBP family?
    
            * A full report (PDF/HTML) of top hits?
    
            * Let me know, and I’ll tailor the next script!
    
  6. RBP enrichments via FIMO (The same to the workflow in 4)

    1. Collect the 3′ UTR sequences: Use the 3UTR.fasta file generated earlier, filtered to protein-coding and downregulated genes.
    
    2. Prepare Motif Database (MEME format)
    
        * ATtRACT: https://attract.cnic.es
        * RBPDB: http://rbpdb.ccbr.utoronto.ca
        * Ray2013 (CISBP-RNA motifs) — available via MEME Suite
        * [RBPmap motifs (if downloadable)]
        #Example format: rbp_motifs.meme
    
    2. Run FIMO to Scan for RBP Motifs (Similar to RBPmap)
    
        fimo --oc fimo_up rbp_motifs.meme mirna_up.fa
        fimo --oc fimo_down rbp_motifs.meme mirna_down.fa
        fimo --oc fimo_background rbp_motifs.meme mirna_background.fa
        #This produces fimo.tsv in each output folder.
    
    3. Run RBP motif enrichment using MEME Suite using AME (Analysis of Motif Enrichment):
    
        ame \
        --control control_3UTRs.fasta \
        --oc ame_out \
        --scoring avg \
        --method fisher \
        3UTR.fasta \
        rbp_motifs.meme
    
        Where:
    
        * 3UTR.fasta = your downregulated genes’ 3′ UTRs
        * control_3UTRs.fasta = background UTRs (e.g., random protein-coding genes not downregulated)
        * rbp_motifs.meme = motif file from RBPDB or Ray2013
    
    4. Interpret Results: Output includes RBP motifs enriched in your downregulated mRNAs' 3′ UTRs.
    
        You can then link enriched RBPs to known interactions with your upregulated miRNAs, or explore their regulatory roles.
    
    5. ✅ Bonus: Predict Which mRNAs Are Targets of Your miRNAs
    
        Use tools like: miRanda, TargetScan, miRDB
    
        Then intersect predicted targets with your downregulated genes to identify likely functional interactions.
    
    6. Summary
    
        Goal    Input   Tool / Approach
        RBP enrichment  3UTR.fasta of downregulated genes   AME with RBP motifs
        Background/control  3′ UTRs from non-differential or upregulated genes
        Link miRNA to targets   Use TargetScan / miRanda    Intersect with down genes
    
    7. Would you like:
    
        * Ready-to-use RBP motif .meme file?
        * Script to generate background sequences?
        * Visualization options for the enrichment results?
    
  7. Other options to get sequences of 3UTR, 5UTR, CDS and mRNA transcripts

    ✅ Option 2: Use Ensembl BioMart (web-based, no coding) --> Lasting too long!
    
        Go to Ensembl BioMart https://www.ensembl.org/biomart/martview/7b826bcbd0cec79021977f8dc12a8f61
    
        Select:
    
        Database: Ensembl Genes
        Dataset: Homo sapiens genes (GRCh38 or latest)
    
        Click on “Filters” → expand Region or Gene to limit your selection (optional).
        Click on “Attributes”:
        Under Sequences, check:
        Sequences
        3' UTR sequences
    
        Optionally add gene IDs, transcript IDs, etc.
    
        Click “Results” to view/download the FASTA of 3' UTRs.
    
    ✅ Option 3: Use GENCODE (precompiled annotations) and gffread
    
        Use a tool like gffread (from the Cufflinks or gffread package) to extract 3' UTRs:
    
            #gffread gencode.v44.annotation.gtf -g GRCh38.primary_assembly.genome.fa -w all_utrs.fa -U
            #gffread -w three_prime_utrs.fa -g GRCh38.fa -x cds.fa -y proteins.fa -U -F gencode.gtf
    
            grep -P "\tthree_prime_utr\t" gencode.v48.annotation.gtf > three_prime_utrs.gtf
            gtf2bed < three_prime_utrs.gtf > three_prime_utrs.bed
            bedtools getfasta -fi GRCh38.primary_assembly.genome.fa -bed three_prime_utrs.bed -name -s > three_prime_utrs.fa
    
            gffread gencode.v48.annotation.gtf -g GRCh38.primary_assembly.genome.fa -U -w all_with_utrs.fa
    
        Add -U flag to extract UTRs, and filter post hoc for only 3' UTRs if needed.
    
    ✅ Option 4: Use Bioconductor in R (UCSC-ID, not suitable!)
    
        # Install if not already installed
        if (!requireNamespace("BiocManager", quietly = TRUE))
            install.packages("BiocManager")
        BiocManager::install("GenomicFeatures")
        BiocManager::install("txdbmaker")
        #sudo apt-get update
        #sudo apt-get install libmariadb-dev
        #(optional)sudo apt-get install libmysqlclient-dev
        install.packages("RMariaDB")
    
        # Load library
        library(GenomicFeatures)
    
        # Create TxDb object for human genome
        txdb <- txdbmaker::makeTxDbFromUCSC(genome="hg38", tablename="refGene")
    
        # Extract 3' UTRs by transcript
        utr3 <- threeUTRsByTranscript(txdb, use.names=TRUE)
    
    # View or export as needed
    
    ✅ Option 5: Extract 3′ UTRs Using UCSC Table Browser (GUI method)
        🔗 Website:
        UCSC Table Browser
    
        🔹 Step-by-Step Instructions
        1. Set the basic parameters:
        Clade: Mammal
    
        Genome: Human
    
        Assembly: GRCh38/hg38
    
        Group: Genes and Gene Predictions
    
        Track: GENCODE v44 (or latest)
    
        Table: knownGene or wgEncodeGencodeBasicV44
    
        Choose knownGene for RefSeq-like models or wgEncodeGencodeBasicV44 for GENCODE
    
        2. Region:
        Select: genome (default)
    
        3. Output format:
        Select: sequence
    
        4. Click "get output"
        🔹 Sequence Retrieval Options:
        On the next page (after clicking "get output"), you’ll see sequence options.
    
        Configure as follows:
        ✅ Output format: FASTA
    
        ✅ Which part of the gene: Select only
        → UTRs → 3' UTR only
    
        ✅ Header options: choose if you want gene name,
    
  8. ⚡️ Bonus: Combine with miRNA-mRNA predictions

    Once you have RBPs enriched in downregulated mRNAs, you can intersect:
        * Which RBPs overlap miRNA binding regions (e.g., via CLIPdb or POSTAR)
        * Check if miRNAs and RBPs compete or co-bind
    This can lead to identifying miRNA-RBP regulatory modules.
    

like unlike

点赞本文的读者

还没有人对此文章表态


本文有评论

没有评论

看文章,发评论,不要沉默


© 2023 XGenes.com Impressum